Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Technical Advance

  • 119 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 11
  • 12
  • Next →
Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties
Michel Demeule, … , Jean-Paul Castaigne, Philippe Sarret
Michel Demeule, … , Jean-Paul Castaigne, Philippe Sarret
Published February 17, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI70647.
View: Text | PDF

Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties

  • Text
  • PDF
Abstract

Neurotensin (NT) has emerged as an important modulator of nociceptive transmission and exerts its biological effects through interactions with 2 distinct GPCRs, NTS1 and NTS2. NT provides strong analgesia when administered directly into the brain; however, the blood-brain barrier (BBB) is a major obstacle for effective delivery of potential analgesics to the brain. To overcome this challenge, we synthesized chemical conjugates that are transported across the BBB via receptor-mediated transcytosis using the brain-penetrant peptide Angiopep-2 (An2), which targets LDL receptor–related protein-1 (LRP1). Using in situ brain perfusion in mice, we found that the compound ANG2002, a conjugate of An2 and NT, was transported at least 10 times more efficiently across the BBB than native NT. In vitro, ANG2002 bound NTS1 and NTS2 receptors and maintained NT-associated biological activity. In rats, i.v. ANG2002 induced a dose-dependent analgesia in the formalin model of persistent pain. At a dose of 0.05 mg/kg, ANG2002 effectively reversed pain behaviors induced by the development of neuropathic and bone cancer pain in animal models. The analgesic properties of ANG2002 demonstrated in this study suggest that this compound is effective for clinical management of persistent and chronic pain and establish the benefits of this technology for the development of neurotherapeutics.

Authors

Michel Demeule, Nicolas Beaudet, Anthony Régina, Élie Besserer-Offroy, Alexandre Murza, Pascal Tétreault, Karine Belleville, Christian Ché, Alain Larocque, Carine Thiot, Richard Béliveau, Jean-Michel Longpré, Éric Marsault, Richard Leduc, Jean E. Lachowicz, Steven L. Gonias, Jean-Paul Castaigne, Philippe Sarret

×

5′RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy
Danos C. Christodoulou, … , Christine E. Seidman, J.G. Seidman
Danos C. Christodoulou, … , Christine E. Seidman, J.G. Seidman
Published February 10, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI70108.
View: Text | PDF

5′RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy

  • Text
  • PDF
Abstract

The transcriptome is subject to multiple changes during pathogenesis, including the use of alternate 5′ start-sites that can affect transcription levels and output. Current RNA sequencing techniques can assess mRNA levels, but do not robustly detect changes in 5′ start-site use. Here, we developed a transcriptome sequencing strategy that detects genome-wide changes in start-site usage (5′RNA-Seq) and applied this methodology to identify regulatory events that occur in hypertrophic cardiomyopathy (HCM). Compared with transcripts from WT mice, 92 genes had altered start-site usage in a mouse model of HCM, including four-and-a-half LIM domains protein 1 (Fhl1). HCM-induced altered transcriptional regulation of Fhl1 resulted in robust myocyte expression of a distinct protein isoform, a response that was conserved in humans with genetic or acquired cardiomyopathies. Genetic ablation of Fhl1 in HCM mice was deleterious, which suggests that Fhl1 transcriptional changes provide salutary effects on stressed myocytes in this disease. Because Fhl1 is a chromosome X–encoded gene, stress-induced changes in its transcription may contribute to gender differences in the clinical severity of HCM. Our findings indicate that 5′RNA-Seq has the potential to identify genome-wide changes in 5′ start-site usage that are associated with pathogenic phenotypes.

Authors

Danos C. Christodoulou, Hiroko Wakimoto, Kenji Onoue, Seda Eminaga, Joshua M. Gorham, Steve R. DePalma, Daniel S. Herman, Polakit Teekakirikul, David A. Conner, David M. McKean, Andrea A. Domenighetti, Anton Aboukhalil, Stephen Chang, Gyan Srivastava, Barbara McDonough, Philip L. De Jager, Ju Chen, Martha L. Bulyk, Jochen D. Muehlschlegel, Christine E. Seidman, J.G. Seidman

×

Optogenetic stimulation of the auditory pathway
Victor H. Hernandez, … , Nicola Strenzke, Tobias Moser
Victor H. Hernandez, … , Nicola Strenzke, Tobias Moser
Published February 10, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI69050.
View: Text | PDF

Optogenetic stimulation of the auditory pathway

  • Text
  • PDF
Abstract

Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2). Optogenetic stimulation of spiral ganglion neurons (SGNs) activated the auditory pathway, as demonstrated by recordings of single neuron and neuronal population responses. Furthermore, optogenetic stimulation of SGNs restored auditory activity in deaf mice. Approximation of the spatial spread of cochlear excitation by recording local field potentials (LFPs) in the inferior colliculus in response to suprathreshold optical, acoustic, and electrical stimuli indicated that optogenetic stimulation achieves better frequency resolution than monopolar electrical stimulation. Virus-mediated expression of a ChR2 variant with greater light sensitivity in SGNs reduced the amount of light required for responses and allowed neuronal spiking following stimulation up to 60 Hz. Our study demonstrates a strategy for optogenetic stimulation of the auditory pathway in rodents and lays the groundwork for future applications of cochlear optogenetics in auditory research and prosthetics.

Authors

Victor H. Hernandez, Anna Gehrt, Kirsten Reuter, Zhizi Jing, Marcus Jeschke, Alejandro Mendoza Schulz, Gerhard Hoch, Matthias Bartels, Gerhard Vogt, Carolyn W. Garnham, Hiromu Yawo, Yugo Fukazawa, George J. Augustine, Ernst Bamberg, Sebastian Kügler, Tim Salditt, Livia de Hoz, Nicola Strenzke, Tobias Moser

×

Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker
Danielle te Vruchte, … , Mario Cortina-Borja, Frances M. Platt
Danielle te Vruchte, … , Mario Cortina-Borja, Frances M. Platt
Published February 3, 2014
Citation Information: J Clin Invest. 2014. https://doi.org/10.1172/JCI72835.
View: Text | PDF

Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker

  • Text
  • PDF
Abstract

Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal biomarker for LSDs. We validated this metric in a mouse model of the LSD Niemann-Pick type C1 disease (NPC1) and in a prospective 5-year international study of NPC patients. Pediatric NPC subjects had elevated acidic compartment volume that correlated with age-adjusted clinical severity and was reduced in response to therapy with miglustat, a European Medicines Agency–approved drug that has been shown to reduce NPC1-associated neuropathology. Measurement of relative acidic compartment volume was also useful for monitoring therapeutic responses of an NPC2 patient after bone marrow transplantation. Furthermore, this metric identified a potential adverse event in NPC1 patients receiving i.v. cyclodextrin therapy. Our data indicate that relative acidic compartment volume may be a useful biomarker to aid diagnosis, clinical monitoring, and evaluation of therapeutic responses in patients with lysosomal disorders.

Authors

Danielle te Vruchte, Anneliese O. Speak, Kerri L. Wallom, Nada Al Eisa, David A. Smith, Christian J. Hendriksz, Louise Simmons, Robin H. Lachmann, Alison Cousins, Ralf Hartung, Eugen Mengel, Heiko Runz, Michael Beck, Yasmina Amraoui, Jackie Imrie, Elizabeth Jacklin, Kate Riddick, Nicole M. Yanjanin, Christopher A. Wassif, Arndt Rolfs, Florian Rimmele, Naomi Wright, Clare Taylor, Uma Ramaswami, Timothy M. Cox, Caroline Hastings, Xuntian Jiang, Rohini Sidhu, Daniel S. Ory, Begona Arias, Mylvaganam Jeyakumar, Daniel J. Sillence, James E. Wraith, Forbes D. Porter, Mario Cortina-Borja, Frances M. Platt

×

Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks
Michael Michaelides, … , Nora D. Volkow, Yasmin L. Hurd
Michael Michaelides, … , Nora D. Volkow, Yasmin L. Hurd
Published November 15, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI72117.
View: Text | PDF

Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks

  • Text
  • PDF
Abstract

The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with μPET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach.

Authors

Michael Michaelides, Sarah Ann R. Anderson, Mala Ananth, Denis Smirnov, Panayotis K. Thanos, John F. Neumaier, Gene-Jack Wang, Nora D. Volkow, Yasmin L. Hurd

×

Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix
Mahboobe Ghaedi, … , Eric S. White, Laura E. Niklason
Mahboobe Ghaedi, … , Eric S. White, Laura E. Niklason
Published October 25, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI68793.
View: Text | PDF

Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix

  • Text
  • PDF
Abstract

The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII–like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.

Authors

Mahboobe Ghaedi, Elizabeth A. Calle, Julio J. Mendez, Ashley L. Gard, Jenna Balestrini, Adam Booth, Peter F. Bove, Liqiong Gui, Eric S. White, Laura E. Niklason

×

Nanoparticle-based flow virometry for the analysis of individual virions
Anush Arakelyan, … , Leonid Margolis, Jean-Charles Grivel
Anush Arakelyan, … , Leonid Margolis, Jean-Charles Grivel
Published August 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67042.
View: Text | PDF

Nanoparticle-based flow virometry for the analysis of individual virions

  • Text
  • PDF
Abstract

While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, “flow virometry,” that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus.

Authors

Anush Arakelyan, Wendy Fitzgerald, Leonid Margolis, Jean-Charles Grivel

×

iPSC-derived β cells model diabetes due to glucokinase deficiency
Haiqing Hua, … , Rudolph L. Leibel, Dieter Egli
Haiqing Hua, … , Rudolph L. Leibel, Dieter Egli
Published June 17, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI67638.
View: Text | PDF | Retraction

iPSC-derived β cells model diabetes due to glucokinase deficiency

  • Text
  • PDF
Abstract

Diabetes is a disorder characterized by loss of β cell mass and/or β cell function, leading to deficiency of insulin relative to metabolic need. To determine whether stem cell–derived β cells recapitulate molecular-physiological phenotypes of a diabetic subject, we generated induced pluripotent stem cells (iPSCs) from subjects with maturity-onset diabetes of the young type 2 (MODY2), which is characterized by heterozygous loss of function of the gene encoding glucokinase (GCK). These stem cells differentiated into β cells with efficiency comparable to that of controls and expressed markers of mature β cells, including urocortin-3 and zinc transporter 8, upon transplantation into mice. While insulin secretion in response to arginine or other secretagogues was identical to that in cells from healthy controls, GCK mutant β cells required higher glucose levels to stimulate insulin secretion. Importantly, this glucose-specific phenotype was fully reverted upon gene sequence correction by homologous recombination. Our results demonstrate that iPSC-derived β cells reflect β cell–autonomous phenotypes of MODY2 subjects, providing a platform for mechanistic analysis of specific genotypes on β cell function.

Authors

Haiqing Hua, Linshan Shang, Hector Martinez, Matthew Freeby, Mary Pat Gallagher, Thomas Ludwig, Liyong Deng, Ellen Greenberg, Charles LeDuc, Wendy K. Chung, Robin Goland, Rudolph L. Leibel, Dieter Egli

×

Multicolor microRNA FISH effectively differentiates tumor types
Neil Renwick, … , Yuan Chang, Thomas Tuschl
Neil Renwick, … , Yuan Chang, Thomas Tuschl
Published May 24, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI68760.
View: Text | PDF

Multicolor microRNA FISH effectively differentiates tumor types

  • Text
  • PDF
Abstract

MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH. As a proof of concept, we used this method to differentiate two skin tumors, basal cell carcinoma (BCC) and Merkel cell carcinoma (MCC), with overlapping histologic features but distinct cellular origins. Using sequencing-based miRNA profiling and discriminant analysis, we identified the tumor-specific miRNAs miR-205 and miR-375 in BCC and MCC, respectively. We addressed three major shortcomings in miRNA FISH, identifying optimal conditions for miRNA fixation and ribosomal RNA (rRNA) retention using model compounds and high-pressure liquid chromatography (HPLC) analyses, enhancing signal amplification and detection by increasing probe-hapten linker lengths, and improving probe specificity using shortened probes with minimal rRNA sequence complementarity. We validated our method on 4 BCC and 12 MCC tumors. Amplified miR-205 and miR-375 signals were normalized against directly detectable reference rRNA signals. Tumors were classified using predefined cutoff values, and all were correctly identified in blinded analysis. Our study establishes a reliable miRNA FISH technique for parallel visualization of differentially expressed miRNAs in FFPE tumor tissues.

Authors

Neil Renwick, Pavol Cekan, Paul A. Masry, Sean E. McGeary, Jason B. Miller, Markus Hafner, Zhen Li, Aleksandra Mihailovic, Pavel Morozov, Miguel Brown, Tasos Gogakos, Mehrpouya B. Mobin, Einar L. Snorrason, Harriet E. Feilotter, Xiao Zhang, Clifford S. Perlis, Hong Wu, Mayte Suárez-Fariñas, Huichen Feng, Masahiro Shuda, Patrick S. Moore, Victor A. Tron, Yuan Chang, Thomas Tuschl

×

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs
David A. Stoltz, … , David K. Meyerholz, Michael J. Welsh
David A. Stoltz, … , David K. Meyerholz, Michael J. Welsh
Published May 8, 2013
Citation Information: J Clin Invest. 2013. https://doi.org/10.1172/JCI68867.
View: Text | PDF

Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid–binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR–/–;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

Authors

David A. Stoltz, Tatiana Rokhlina, Sarah E. Ernst, Alejandro A. Pezzulo, Lynda S. Ostedgaard, Philip H. Karp, Melissa S. Samuel, Leah R. Reznikov, Michael V. Rector, Nicholas D. Gansemer, Drake C. Bouzek, Mahmoud H. Abou Alaiwa, Mark J. Hoegger, Paula S. Ludwig, Peter J. Taft, Tanner J. Wallen, Christine Wohlford-Lenane, James D. McMenimen, Jeng-Haur Chen, Katrina L. Bogan, Ryan J. Adam, Emma E. Hornick, George A. Nelson IV, Eric A. Hoffman, Eugene H. Chang, Joseph Zabner, Paul B. McCray Jr., Randall S. Prather, David K. Meyerholz, Michael J. Welsh

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 11
  • 12
  • Next →
Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts