Neutrophils exert potent antimicrobial activities in their role as first-line cellular defenders against infection. The synergistic and collective actions of oxidants and granule proteins, including serine proteases, support the microbial killing in phagosomes, where most neutrophil-mediated antimicrobial action occurs. In addition to phagocytosis, specific stimuli prompt neutrophils to extrude a matrix of DNA, histones, and granule proteins to produce neutrophil extracellular traps (NETs), which can trap microbes. Mice lacking the serine proteases necessary for NET production are more susceptible to infection, an observation suggesting that functional NETs are required for host protection. In this issue of the JCI, Sørensen and colleagues characterize neutrophils from a patient with Papillon-Lefèvre syndrome. The patient has an inactivating mutation in the gene encoding dipeptidyl peptidase I, resulting in neutrophils lacking elastase, a serine protease required for NET production. Despite the inability to form NETS, neutrophils from this patient killed pathogens in vitro, and the patient did not exhibit evidence of an increased propensity toward bacterial infections. Together, these results suggest that proteases in human neutrophils are dispensable for protection against bacterial infection and that the ability to generate NETs in vitro does not compromise host defense.


William M. Nauseef


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.